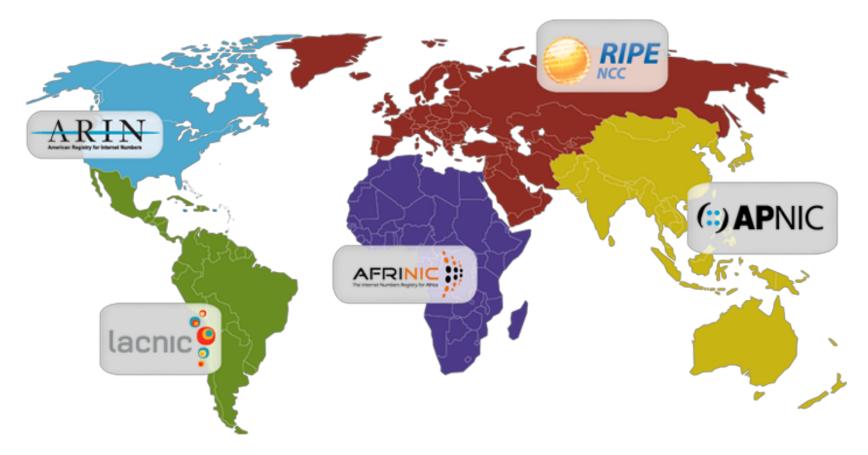
Agotamiento de IPv4 y necesidad de IPv6

Guillermo Cicileo

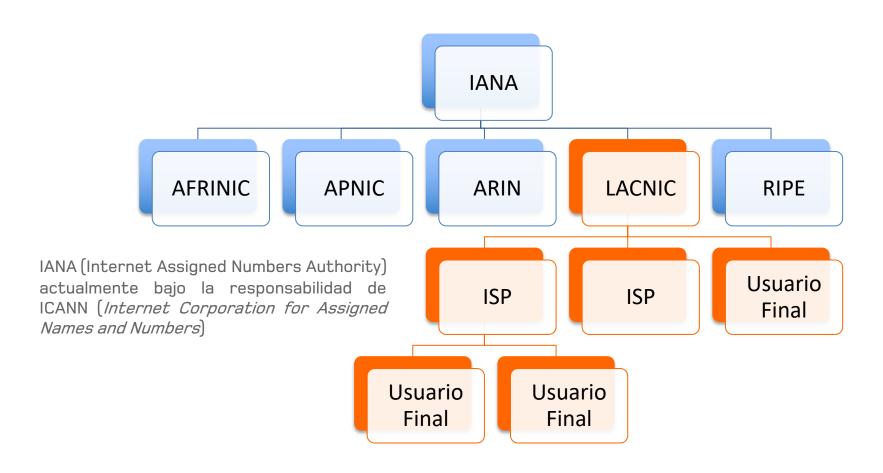
Cómo funciona Internet?

- Para mover tráfico de un lugar a otro necesitamos identificar los equipos:
 - Para esto se usan las direcciones IP
- Esas direcciones tienen que ser únicas a nivel global para no tener problemas
- Las direcciones de fuente y destino tienen que ser conocidas para poder enviar información de un lugar a otro

Cómo garantizamos la unicidad?


- Llevamos un registro de quién tiene asignado cada rango
- En el principio esto se hacía simplemente anotando en un cuaderno
- Actualmente esta función la llevan adelante IANA y los RIRs

CÓMO SE ASIGNAN LAS DIRECCIONES EN INTERNET



Registros Regionales de Internet (RIRs)

Distribución de Recursos de Numeración de Internet

Registros de Internet Regionales (RIR)

Organizaciones

- . Sin fines de lucro
- Membresía
- Bottom up

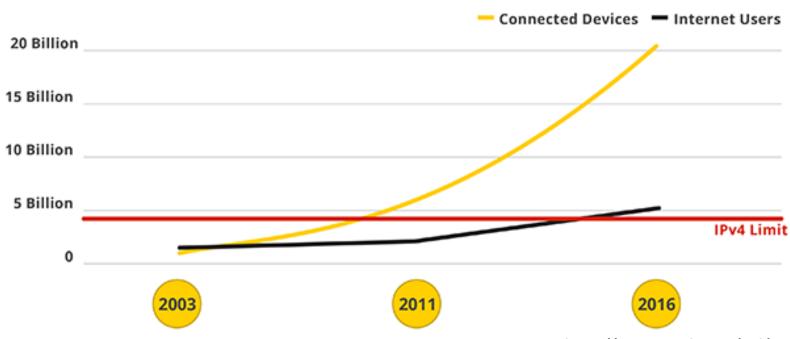
Con la funci n de:

- Administrar el espacio de direcciones y otros recursos de Internet para una regi n determinada
- Apoyar la Internet abierta como herramienta de desarrollo

¿Cuáles Recursos de Internet?

- Hay tres recursos númericos fundamentales para el crecimiento y despliegue de la red:
 - Direcciones IPv4
 - Direcciones IPv6
 - Números de Sistema Autónomo
- Servicios
 - Directorio WHOIS
 - DNS reverso
 - RPKI (certificación de recursos)

AGOTAMIENTO DE IPV4



IPv4

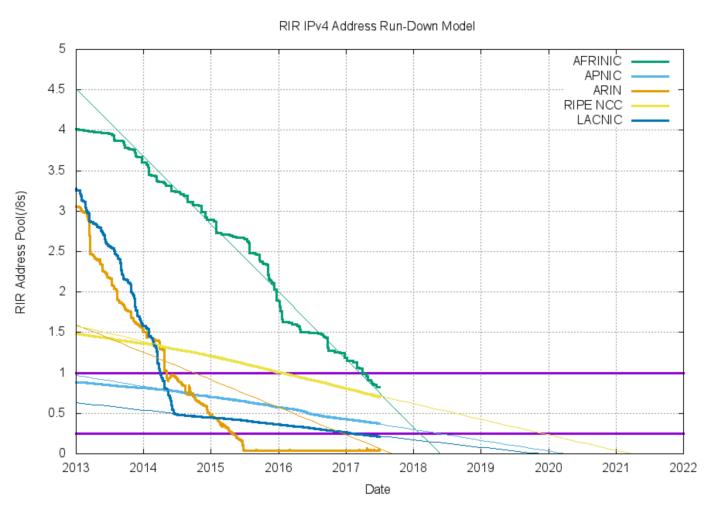
- Espacio de 4.294.967.296 direcciones IP (no todas pueden ser utilizadas)
- Parecen muchas, ¿no?
- Pero la población mundial es de casi 7 mil millones de habitantes
- 87% tiene celular y 35% usa Internet
- Todos solemos utilizar varias direcciones IP
- Ya no parecen tantas, ¿no?

El crecimiento de dispositivos y usuarios

El agotamiento de IPv4

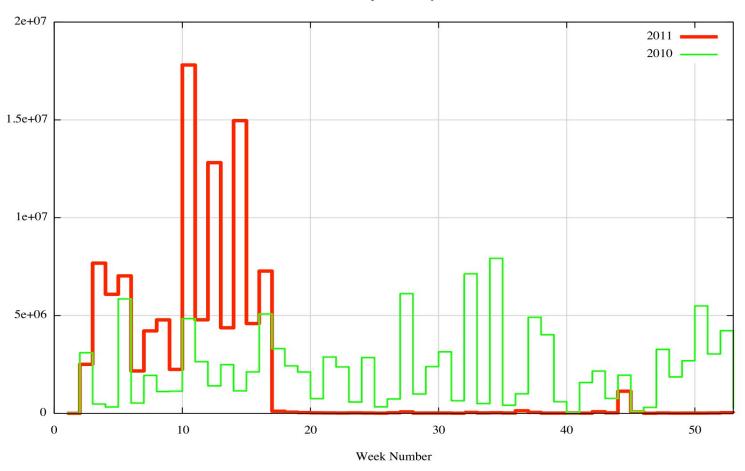
 A comienzos de 2011, IANA agotó el stock central de direcciones IPv4

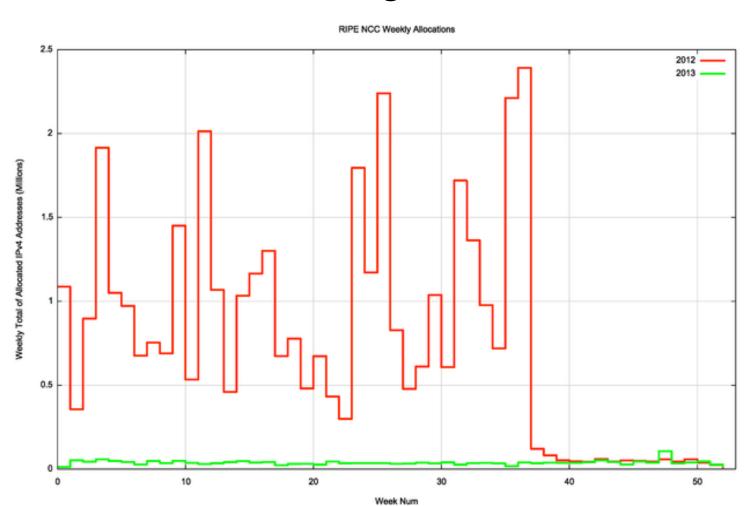
RIR	Estado recursos IPv4
APNIC	Se comenzó a utilizar el último /8 desde Abril de 2011
RIPE	Se comenzó a utilizar el último /8 el 14 de Septiembre de 2012
LACNIC	Fase 3 de agotamiento desde 15/2 de 2017
ARIN	Desde el 1/7/2015 políticas de lista de espera para los pedidos no satisfechos
AfriNIC	En Abril de 2017 comenzó a utilizar el último /8, si bien las políticas más restrictivas aun no entraron en vigencia (Fase 1)



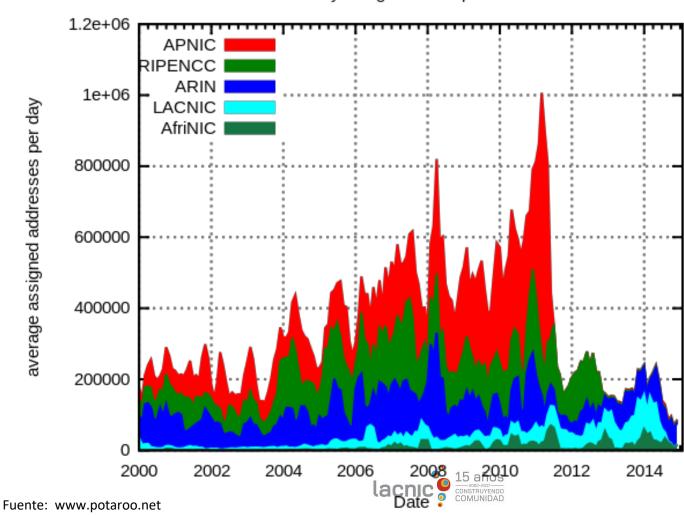
Por qué virtual agotamiento?

- Porque se traspasa un límite inferior a partir del cual empiezan a regir políticas restrictivas
- Antes: asignación en base a necesidad
 - Tamaño organización, justificación
- Ahora: máximo fijo de /22 (1024 direcciones)
 - Sin importar qué organización es, cuánto cubre, etc


Pool de direcciones remanente


Región de APNIC

Addresses Allocated per Week by APNIC for 2011

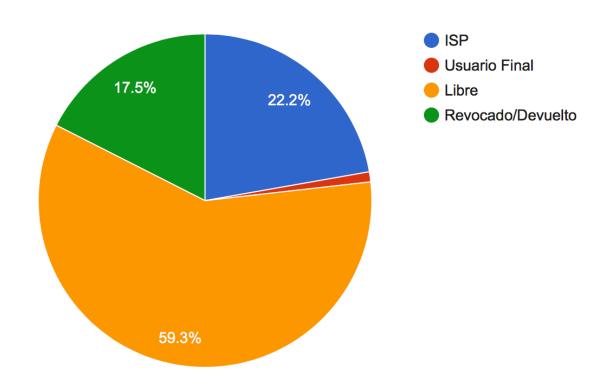

Región de RIPE NCC

Tasa de asignación diaria

Fases en LACNIC

- Se dividió en fases el período de agotamiento:
- Fase 0: la etapa previa
- Fase 1: a partir de llegar a un /9
 - Políticas mas restrictivas, pero sin limitación de tamaño de asignación
- Fase 2: a partir de llegar a un /10
 - Límite máximo de un /22 por organización
- Fase 3: al llegar a un /11

 Sólo se asignarán a organizaciones que no tuvieran antes

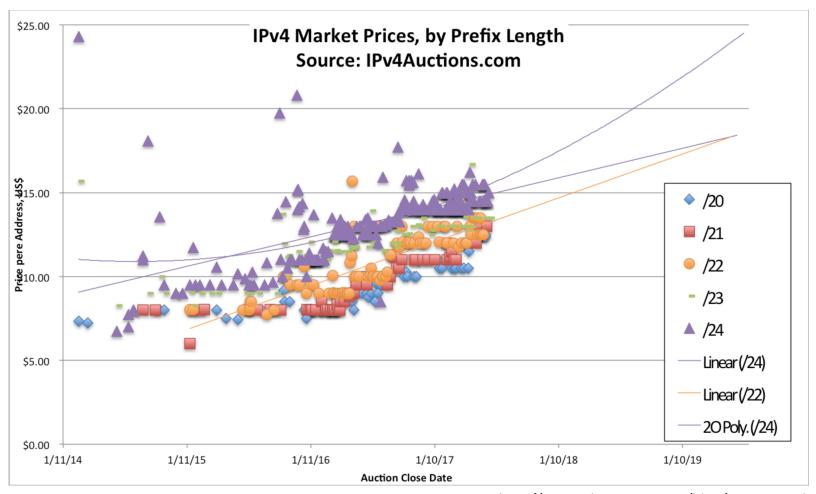


Agotamiento en LACNIC

- Actualmente en Fase 3
 - Desde 15/02/2017
- Política vigente: nuevos entrantes
- En la práctica ninguna organización con recursos IPv4 de LACNIC podrá pedir nuevos bloques
- Importante: quienes a
 ún no cuentan con recursos IPv4, todav
 ía están a tiempo.

Pool de Fase 3

CÓMO SEGUIR?



Tres caminos posibles

- Carrier grade NAT / Large scale NAT
 - No escala a largo plazo
- Mercados secundarios de direcciones IPv4
 - Costos crecientes; solución de corto plazo
- Despliegue de IPv6 posiblemente usando tecnicas de transición como NAT64/DNS64, 464XLAT, MAP, dual stack con CGN

Evolución de precios en el mercado de transferencias

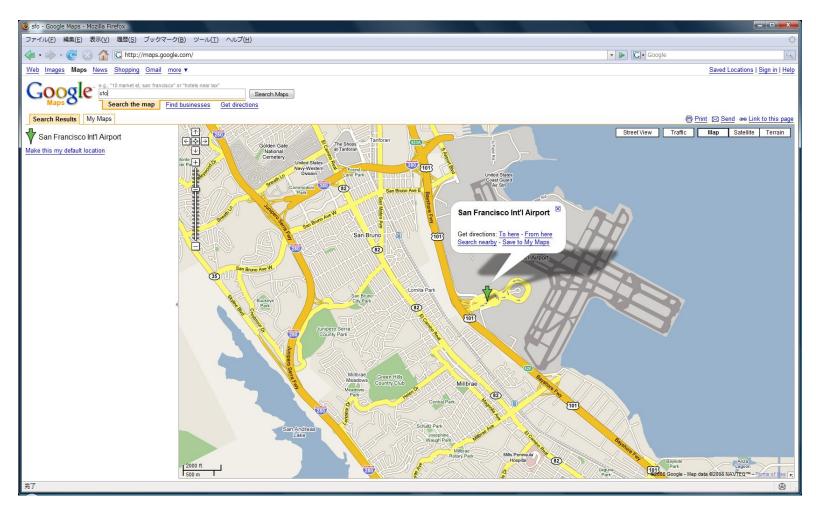
Qué están haciendo los ISPs en LAC?

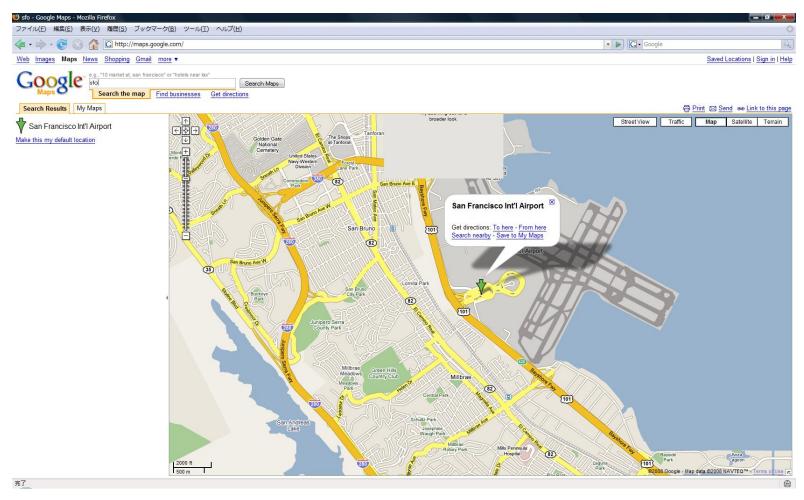
- La mayoría utilizan CGN para el acceso masivo:
 - En la red móvil
 - En la red residencial (xDSL+HFC)
 - Cuando los usuarios tienen problemas con CGN, les asignan una IP pública.
- Para usuarios corporativos: usualmente se utiliza una dirección IP pública.
- No es una buena solución

Problemas de CG NAT

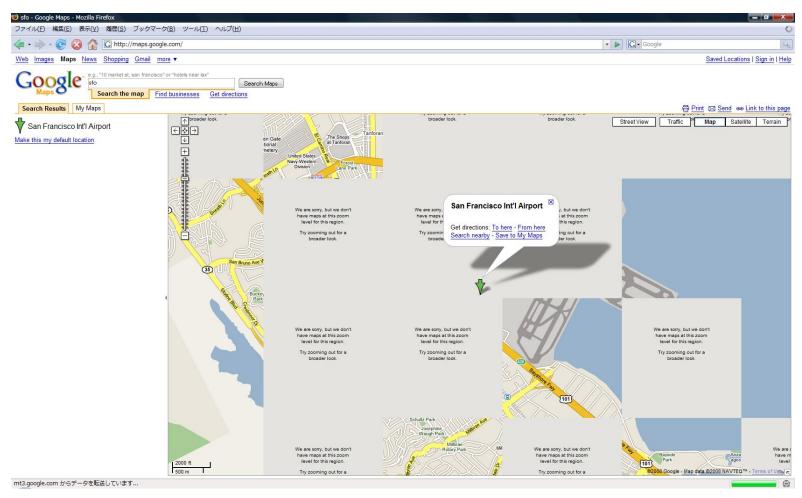
- Al compartir una misma dirección IPv4 se modifica el modelo de comunicación IP punto a punto
- ACLs (Listas de control de acceso) para evitar ciertos ataques tienen importantes efectos colaterales
 - Al bloquear el tráfico de un cliente "malo", también bloqueamos el tráfico de muchos clientes "buenos"
- Para identificar quién accedió a un servicio, no solo hay que guardar la dirección IP sino también el puerto
- Las "cajas" NAT tienen limitaciones respecto del número de sesiones
- Clientes de distintos países salen a Internet a través de una misma dirección IP
 - Webs específicas por país "pensarán" que estamos en otro país
 - Aplicaciones de Geolocation nos mostrarán una ubicación equivocada

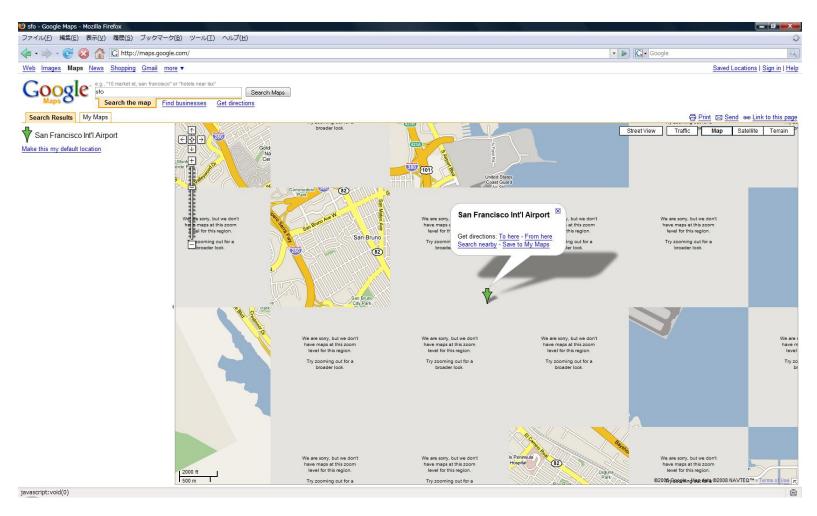
Cuántos usuarios por IP?


- Cantidad de ports teórica: 64K
 - Pero por seguridad se usan los 32K superiores
- Si asignamos 1000 a 3000 puertos por usuario, eso nos da un máximo de 10 usuarios por IPv4
- Los clientes a su vez hacen NAT44, con 3 dispositivos por cliente, estamos en el límite inferior de 1000 ports por usuario


Ejemplo de # de sesiones concurrentes

Webpage	# of sessions		
No operation	5 ~ 10		
Yahoo top page	10~20		
Google image search	30 ~ 60		
Nico Nico Douga	50 ~ 80		
OCN photo friend	170~200+		
iTunes	230~270		
iGoogle	80 ~ 100		
Rakuten	50 ~ 60		
Amazon	90		
HMV	100		
YouTube	90		

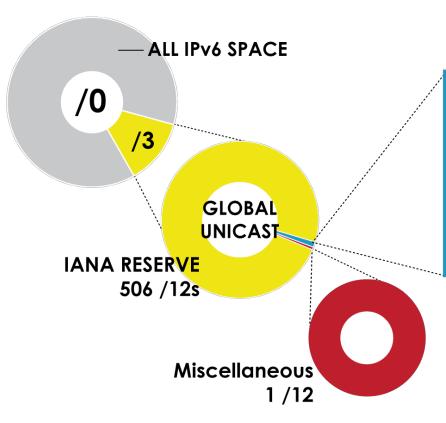

Max 30 conexiones


Max 20 conexiones

Max 15 conexiones

Max 10 conexiones

Max 5 conexiones



La solución es IPv6

- Propuesto en los años 90, es una solución definitiva a la escasez de direcciones
- Qué cambia? Fundamentalmente más direcciones: 128 bits
 - 2^128 > 3,40*10^38 directiones IP
- Una sola LAN puede tener mas direcciones que toda la Internet actual
- Un ISP podría tener 2^32 subredes (es decir, la misma cantidad de direcciones que toda la Internet actual)

Cuanto espacio IPv6 hay disponible?

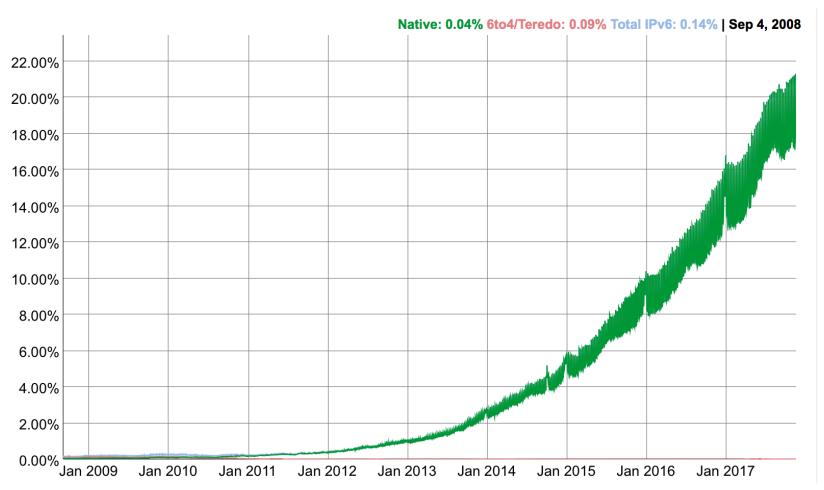
RIRs 5 /12s (October 2006)

RIR	IPv6 ADDRESS			
AfriNIC	2C00:0000::/12			
APNIC	2400:0000::/12			
ARIN	2600:0000::/12			
LACNIC	2800:0000::/12			
RIPE NCC	2A00:0000::/12			

Problema

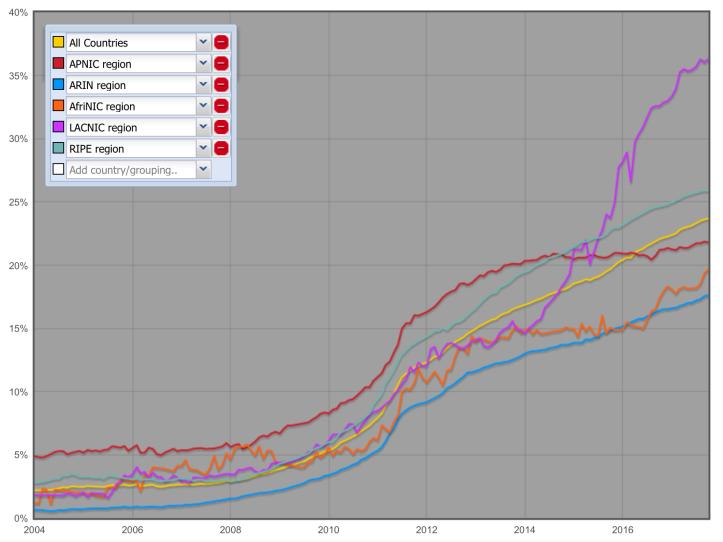
Dispositivos que SOLO tienen IPv4 **no** pueden hablar con dispositivos que SOLO tienen IPv6 y viceversa.

Importante: los protocolos convivirán mucho tiempo


- Premisa para la creación del protocolo:
 - coexistencia con IPv4
- No debe haber un "dia D" en la transición
- Se definen mecanismos de transición
 - Inicialmente basados en redes mayoritariamente IPv4
 - Dual Stack
 - Diversa variedad de túneles
 - Actualmente pensados en una Internet mayoritariamente IPv6
 - Traducción: NAT64/DNS64
 - 464XLAT, MAP-T, MAP-E, DS-Lite y otros

ESTADO DE DESPLIEGUE DE IPv6

Según Google



Según las tablas de ruteo (ASNs)

permalink: http://v6asns.ripe.net/v/6?s=_ALL;s=_RIR_APNIC;s=_RIR_ARIN;s=_RIR_AfriNIC;s=_RIR_LACNIC;s=_RIR_RIPE_I

This graph shows the percentage of networks (ASes) that announce an IPv6 prefix for a specified list of countries or groups of countries

Colombia y la región

Pais	ICAv6	PACTO	ASTRAN	CONT	USUARIOS
Argentina	29.91	6.56	76.55	54.41	3.07
Bolivia	24.63	6.06	47.78	58.27	4.67
Brazil	42.07	10.34	69.27	59.28	18.3
Chile	19./3	8.24	/0.29	50 15 VB112	0.01
Colombia	27.57	15.7	93.74	59.28	0.11
Costa Rica	22.06	10.5	77 70	71.47	0.02
Ecuador	49.09	43.33	96.04	56.2	17.35
Guatemala	35.15	18.52	78.36	54.34	6.78
Honduras	20.02	2.67	73.84	60.02	0
Mexico	27.5	19.87	60.14	60.96	3.81
Panama	20.63	5.71	72.97	58.65	0.02
Peru	35.9	28.57	53.85	56.1	15.3
Trinidad and Tobago	43.83	25	77.19	57.67	17.5
Uruguay	37.99	21.43	83.47	56.32	7.95
Venezuela	20.14	13.33	73.1	54.37	0

Contenido en IPv6

- Generalmente se dice: "no hay contenido en IPv6"
- Sin embargo, no es asi:
 - Al menos la mitad del contenido está disponible en IPv6
 - Lo que importa no es el número de sitios, sino el tráfico
 - La mayoría de las CDNs, Google, YouTube,
 Netflix, Facebook, etc, ya tienen IPv6

Por qué desplegar IPv6 hoy?

- Las CGN tendrán menos carga
 - Potencialmente más de la mitad del tráfico podrá ser ruteado en IPv6 nativo
 - Las apps que no funcionan detrás de CGN podrán utilizar IPv6 nativo
 - Las apps que utilizan una gran cantidad de sesiones, también podrán utilizar IPv6 nativo
- Menos problemas con los usuarios, menos quejas a los help desks

Por qué desplegar IPv6 hoy?

- Redes sólo IPv4 van a tener peor performance: capas de NAT
 - Comienza a haber muchas redes IPv6 only
- Estar preparados para IoT
 - Multiplicación exponencial de dispositivos en las redes
 - Necesidad de modelos end to end
 - Salir de las soluciones propietarias

Otras posibilidades

- Desplegar 464XLAT en las redes móviles
 - Doble traducción que permite que las aplicaciones solo IPv4 funcionen
 - No se necesita dual stack
 - Red sólo IPv6 en los móviles
 - RFC 6877: 464XLAT: Combination of Stateful and Stateless Translation
- Despligue de Datacenters sólo IPv6
 - RFC 7755 y RFC 7756
 - SIIT-DC: Stateless IP/ICMP Translation for IPv6 Data Center Environments
 - Describen como usar técnicas de transición como NAT64 / 464XLAT para datacenters IPv6-only
 - RFC 7269: NAT64 Deployment Options and Experience

IPv6 es una necesidad

- El crecimiento de Internet es un hecho
 - Consecuencia del éxito de IPv4
 - La extensión en nuevas regiones impone una demanda cada día mayor
 - Nuevos dispositivos siempre encendidos y globalmente accesibles
- La escasez de direcciones es una limitante
 - IPv6 está maduro
 - Es el único protocolo previsto para reemplazar el IPv4

Info y Documentación

- http://portalipv6.lacnic.net
- http://www.labs.lacnic.net
- http://eventos.lacnic.net/
- http://www.lacnog.org
- IPv6 para operadores de red:

 http://portalipv6.lacnic.net/wp content/uploads/2014/12/ipv6 operadores
 red.pdf

MUCHAS GRACIAS

